Świat Sztuczna inteligencja pomoże precyzyjnie przewidywać plony kukurydzy? 30 marca 2020 Świat Sztuczna inteligencja pomoże precyzyjnie przewidywać plony kukurydzy? 30 marca 2020 Przeczytaj także Ekologia System kaucyjny: koniec okresu przejściowego. Czy zwracanie opakowań się opłaca? Od 1 stycznia 2026 roku w Polsce kończy się okres przejściowy systemu kaucyjnego. Butelki plastikowe, puszki metalowe i szklane butelki wielokrotnego użytku trafiają do obrotu wyłącznie z oznaczeniem kaucji, a każdy konsument, który je zwraca, może odzyskać kilkaset złotych rocznie. To nie tylko krok w stronę ochrony środowiska, ale także finansowa zachęta do zmiany konsumpcyjnych nawyków w celu ochrony domowego budżetu. Ekologia Świąteczne nadwyżki odpadów. Prawidłowa segregacja oraz co zrobić z choinką i żywnością? Koniec świąt to dla systemów gospodarki odpadami jeden z najbardziej obciążających momentów w roku. Do koszy trafiają nadwyżki jedzenia, opakowania po prezentach, dekoracje i choinki. Tymczasem wiele z tych rzeczy można jeszcze wykorzystać, oddać lub prawidłowo posegregować. Podpowiadamy, co zrobić z poświątecznymi nadwyżkami, by mniej trafiło na wysypiska, a więcej zostało w obiegu. Naukowcy z University of Illinois opracowali algorytm oparty na sztucznej inteligencji, który z dużą precyzją przewidzi poziom plonów kukurydzy. Technologia korzysta z rodzaju uczenia maszynowego. Nie używa gotowych wzorców, a uczy się „zasad” na podstawie nowych danych. Działa więc jak ludzki mózg. Reklama Sztuczna inteligencja w rolnictwie Rolnictwo precyzyjne i wspomagane komputerowo ma świetlaną przyszłość. Szacuje się, że rynek do 2027 roku osiągnie wartość 12,9 mld dolarów. To istotne z punktu widzenia ekologii – technologie (w tym poniższa) pomagają w opracowaniu optymalnych rekomendacji dla rolników. Może to zmniejszyć m.in. ilość stosowanych nawozów mineralnych. Algorytm, który sam się uczy Badacze bazowali na danych z 2017 i 2018 roku pochodzących z projektu „Data Intensive Farm Management”, które objęły 226 plantacji obsianych kukurydzą i nawożonych azotem, usytuowanych w Środkowym Zachodzie USA, Brazylii, Argentynie i RPA. W celu oszacowania plonów zestawiono naziemne pomiary ze zdjęciami satelitarnymi o wysokiej rozdzielczości. Pola podzielono wirtualnie na pięciometrowe kwadraty. Dla każdego z nich wprowadzano do komputera dane na temat nasion, gleby i dawki nawozu. Fotowoltaika w walce z marnowaniem żywności Ciągła analiza danych Technologia oparta jest na rodzaju uczenia maszynowego określanego jako “konwolucyjne sieci neuronowe” (ang. convolutional neural network – CNN). CNN nie używa gotowych wzorców, lecz uczy się i wprowadza zasady na podstawie nowych danych. – Nie wiemy dokładnie, co powoduje różnice w poziomie plonów na polu. Czasem ludziom wydaje się, że jakieś miejsce powinno zareagować silnie na azot, a tak się nie dzieje – i odwrotnie. CNN potrafi wskazać ukryte przyczyny takiej odpowiedzi – stwierdził Nicolas Martin z Wydziału Nauk o plonach University of Illinois. Badania opublikowano w „Computers and Electronics in Agriculture”. Czytaj także: Randap zabija nie tylko chwasty. Co ze środowiskiem i naszym zdrowiem? Źródło: naukawpolsce.pap.pl, fot. główne: Canva Artykuł stanowi utwór w rozumieniu Ustawy 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych. Wszelkie prawa autorskie przysługują swiatoze.pl. Dalsze rozpowszechnianie utworu możliwe tylko za zgodą redakcji.